Synthesis and biological evaluation of a $PtdIns(4,5)P_2$ and a phosphatidic acid affinity matrix \dagger

PERKIN

Ze-Yi Lim,^a Jan W. Thuring,^a Andrew B. Holmes,^{*a} Maria Manifava^b and Nicholas T. Ktistakis^b

^a Cambridge Centre for Molecular Recognition, Department of Chemistry, University of Cambridge, Lensfield Road, UK CB2 1EW. E-mail: abh1@cam.ac.uk; Fax: 44 1223 336362; Tel: 44 1223 336404

Received (in Cambridge, UK) 18th January 2002, Accepted 14th February 2002 First published as an Advance Article on the web 15th March 2002

Analogues of dipalmitoyl phosphatidic acid (PA), dilauroyl PA and phosphatidylinositol 4,5-bisphosphate $[PtdIns(4,5)P_2]$ were synthesised and immobilised onto a solid support, Affi-Gel 10. Using them as affinity matrices, a number of known proteins as well as a set of novel proteins were found to bind specifically to PA.

Introduction

Polyphosphoinositides (PIP_n's) (Fig. 1) represent a class of

Fig. 1 Phosphoinositides and dipalmitoyl PA as their sodium salts.

membrane phospholipids, which exhibit a wide range of activities in cell signalling cascades.¹ The 3-phosphorylated lipid products of phosphoinositide 3-kinase (PI3K), *viz.* PtdIns(3)P, PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃, mediate cell functions as diverse as cell movement, division, survival, as well as glucose transport and many others, upon cell surface receptor stimulation by hormones and growth factors.²⁻⁴ The last mentioned phosphoinositide is the product of 3-phosphorylation of the relatively abundant PtdIns(4,5)P₂.

Another well established function of PtdIns(4,5)P₂ is the phospholipase C (PLC) promoted hydrolysis to give diacylglycerol and inositol(1,4,5)P₃, which activates protein kinase C (PKC) and releases Ca²⁺ from internal stores.⁵ Recent work has shown that PtdIns(4,5)P₂ is a highly versatile signalling molecule in its own right, and is involved in fundamental processes in membrane trafficking and plasma membrane-cytoskeleton linkages.⁶ As such, PtdIns(4,5)P₂ serves as an effector of numerous multiple downstream proteins, many of which remain to be identified. The biosynthesis of

To identify the direct downstream effectors of PtdIns $(4,5)P_2$ and PA, and hence to gain more insight in their roles in signalling and housekeeping, we embarked on the synthesis of immobilised PAs 1a and b and PtdIns $(4,5)P_2$ 2, all of which have saturated fatty acid chains, as is illustrated in Fig. 2. ¹⁰

$$\begin{array}{c} OC(O)C_nH_{2n+1} \\ NaO \\ OOC(O)C_{11}H_{22}NH \\ OOC(O)C_{15}H_{31} \\ NaO \\ OOC(O)C_{15}H_{31} \\ OOC(O)C_{11}H_{22}NH \\ OOC(O)C_{11$$

Fig. 2 Immobilised PAs and PtdIns(4,5)P₂.

Results and discussion

Synthesis of immobilised PAs

Immobilised PAs 1a, b and immobilised PtdIns(4,5)P₂ 2 were prepared by attaching a terminal fatty acid amino function at the *sn*-1 position of the glycerol moiety, as in 3a, b and 4, to an agarose solid support.

The soluble PA analogues 3a and 3b were prepared by extension of methodology previously developed by Prestwich 11 and by us (Scheme 1). 12 The commercially available (S)-(+)-1,2-O-isopropylidene glycerol 5 was converted to both alcohols (–)-10a and (–)-10b by first protecting the free hydroxy group with a PMB (4-methoxybenzyl) group. The isopropylidene moiety

DOI: 10.1039/b200585a

^b Babraham Institute, Department of Signalling, Inositide Laboratory, Cambridge, UK CB2 4AT

PtdIns(4,5)P₂ involves mainly 5-phosphorylation of PtdIns(4)P by phosphatidylinositol 4-phosphate (PI4P) 5-kinase,⁵ which is activated by phosphatidic acid (PA), a product of phospholipase D (PLD) catalysed hydrolysis of phosphatidyl choline.⁷ It is suspected that PA, besides being an important intermediate in the biosynthesis of glycerophospholipids, fulfils crucial roles in lipid based signalling and intracellular trafficking, because PLD activation is associated with the regulation of these processes.^{8,9} This would imply the existence of PA-interacting proteins that operate downstream of PLD activation.

[†] Dedicated to the memory of the late Professor Roy Gigg.

Scheme 1 Reagents and conditions: i, PMBCl, NaH, DMF, 0 °C-rt; ii, TsOH, MeOH; iii, HOOCC $_{11}H_{22}$ NHCbz, DMAP, DCC, CH $_{2}$ Cl $_{2}$, 0 °C-rt; iv, palmitoyl chloride, pyr., DMAP, CH $_{2}$ Cl $_{2}$, 0 °C-rt; v, lauroyl chloride, pyr., DMAP, CH $_{2}$ Cl $_{2}$, 0 °C-rt; vi, DDQ, 'wet' CH $_{2}$ Cl $_{2}$; vii, (BnO) $_{2}$ PNPr $_{2}$, 1 $_{1}$ H-tetrazole, CH $_{2}$ Cl $_{2}$, rt, then MCPBA, $_{2}$ 78 °C-rt; vii, H $_{2}$, Pd black, Bu'OH-H $_{2}$ O, NaHCO $_{3}$, 15 bar; ix, BnOP(NPr $_{2}$) $_{2}$, 1 $_{1}$ H-tetrazole, CH $_{2}$ Cl $_{2}$, rt [PMB = 4-methoxybenzyl; Cbz = $_{1}$ M-benzyloxycarbonyl].

was removed by acidic hydrolysis to afford the diol (-)-7 in good yield. DCC coupling of the primary hydroxy group over the secondary hydroxy group with 12-N-(benzyloxycarbonyl)aminododecanoic acid gave the mono lipid (+)-8 which was acylated with palmitoyl chloride or lauroyl chloride to afford the PMB protected lipids (+)-9a and (+)-9b respectively, in good yield. Alcohols (-)-10a and (-)-10b were obtained by deprotection of the PMB group with DDO oxidation. Subsequently, phosphitylation of alcohols (-)-10a and (-)-10b with (BnO)₂P(NPrⁱ₂) followed by in situ oxidation with MCPBA gave phosphates (+)-11a and (+)-11b. Reductive debenzylation was readily effected using H₂ (15 bar) in the presence of Pd-black and NaHCO3 in tert-butyl alcohol-H2O (6:1) as the solvent, to afford amines 3a and 3b isolated as sodium salts, in good yield. Alternatively, (-)-10a was phosphitylated with BnOP(NPr₂)₂ to give the phosphoramidite (+)-12, which is the lipid synthon in the preparation of the ω -amino PtdIns(4,5)P₂ 4 (vide infra). 11,13

Synthesis of PtdIns(4,5)P₂

The synthesis of 4^{14} (Scheme 2) started from the readily available *myo*-inositol orthoformate 13, which was converted in 6 steps to the optically pure camphor acetal (–)-14, derived from (–)-camphor. The intermediate (–)-14, in which the resolving camphor fragment served to protect the 3- and 4-positions of the *myo*-inositol ring, has previously been used by us in the synthesis of dipalmitoyl PtdIns(3,4,5)P₃. ^{15,16}

Subsequent *p*-methoxybenzylation followed by acetal deprotection afforded the 3,4-diol (-)-16. Chemoselective benzylation of the 3-position was readily effected *via* the *in situ* generated stannane acetal in the presence of tetrabutylammonium bromide and benzyl bromide in refluxing acetonitrile. Using these conditions developed by Gigg *et al.*,¹⁷ the ratio of 3-benzyl: 4-benzyl was approximately 4: 1 as judged from ¹H NMR analysis. It should be noted that preformation of the cyclic stannane acetal, followed by benzylation in the presence of CsF in DMF,¹⁸ resulted in a lower yield and selectivity. The required 3-benzylated product (-)-17 was purified by flash

Scheme 2 Reagents and conditions: i, PMBCl, NaH, DMF, 0 °C-rt; ii, AcCl, MeOH-CH₂Cl₂; iii, Bu₂SnO, 3 Å MS, BnBr, Bu₄NBr, CH₃CN, reflux; iv, Rh(PPh₃)₃Cl, EtNPrⁱ₂, toluene-H₂O-EtOH, reflux; v, AcCl, MeOH-CH₂Cl₂, 0 °C-rt.

chromatography and trituration. Deprotection of the allyloxy position using Wilkinson's catalyst, followed by acid treatment, gave the known diol (+)-18.

Definite proof for the observed regioselectivity of the stannylation—benzylation process was obtained by an independent synthesis of the diol (+)-18, starting from the known enantiomerically pure diol (+)-19.¹⁹ A four step sequence (Scheme 3) yielded (+)-18, which has identical optical rotatory and ¹H NMR data to the material prepared *via* Scheme 2.

Scheme 3 Reagents and conditions: i, allyl Br, NaH, DMF, 0 °C-rt; ii, AcCl, MeOH, CH₂Cl₂; iii, BnBr, NaH, DMF, 0 °C-rt; iv, Rh(PPh₃)₃Cl, EtNPr'₂, toluene–H₂O–EtOH, reflux; v, AcCl, MeOH–CH₂Cl₂, 0 °C-rt.

The diol (+)-18 obtained was phosphorylated and PMB-deprotected under standard conditions to afford the alcohol (-)-24 (Scheme 4), ¹⁹ which was then coupled with the phosphoramidite 12 in the presence of 1*H*-tetrazole, followed by *in situ* oxidation with MCPBA to give the fully protected phosphoinositide (-)-25 (Scheme 4). Global deprotection was carried out using similar conditions as mentioned above to give the ω -amino PtdIns(4,5)P, analogue 4.

Finally, the PA amines 3a and 3b and PtdIns(4,5)P₂ amine 4 were coupled to the N-hydroxysuccinimide (NHS) activated ester resin, Affi-Gel 10, to afford the corresponding affinity matrices 1a, 1b and 2. The PtdIns(4,5)P2 modified matrix 2 was prepared in water using excess NaHCO3, by reacting 60 µmol (4 cm³) of the activated Affi-Gel 10 resin with 14.3 umole of the ω-amino-substituted phospholipid 4 to give a loading of 4.5 µmol as judged from the recovery of the amino phospholipid 4, which was quantified by 500 MHz ¹H NMR spectroscopy in the presence of myo-inositol orthoformate 13 as the internal standard. The poor solubility of the amino terminated PAs 3a and 3b necessitated the use of the solvent combination chloroform-methanol-water, 4:5:1 to yield material with a loading of 16–17% of PAs 3a and 3b onto 30 μmol of activated ester resin respectively, as estimated by ¹H NMR analysis of the remaining lipid 3a or 3b.

Scheme 4 Reagents and conditions: i, (BnO)₂PNPrⁱ₂, 1*H*-tetrazole, CH₂Cl₂, rt, then MCPBA, -78 °C-rt; ii, CAN, CH₃CN-H₂O; iii, lipid 12, 1*H*-tetrazole, CH₂Cl₂, rt, then MCPBA, -78 °C-rt; iv, H₂, Pd black, 15 bar, NaHCO₃, Bu'OH-H₂O.

Biological evaluation

By incubating the PA-modified affinity resin 1a with a brain cytosol extract in the presence of a non-ionic detergent, we found that a number of proteins bind specifically to those beads, *i.e.* their binding was inhibited by soluble dilauroyl PA.²⁰ Among the PA-binding proteins identified are the β -cop subunit of coatomer, ADP ribosylation factor (Arf), N'-ethylmaleimide-sensitive factor (NSF) and kinesin, all of which are involved in intracellular traffic.²⁰ In addition, a set of five novel proteins was found. None of the above mentioned proteins showed any binding to the uncoupled Affi-Gel 10 beads nor to the PtdIns(4,5)P₂ beads 2. An example of the binding of β -cop to PA beads is shown in Fig. 3 We incubated in parallel brain

Fig. 3 Specificity of binding to lipid-coupled beads from sheep brain cytosol. Cytosol was made 0.5% in the ionic detergent NP-40, and lysates were mixed with PA- or PI(4,5)P2-coupled beads as indicated. Following binding and SDS-PAGE, the gels were blotted and probed with antibodies indicated. Lysate in each case represents 1% of total used during binding.

cytosol with PA-resin 1a and immobilised PtdIns(4,5)P₂ 2. After SDS-PAGE analysis of the bound material and probing with antibodies to β -cop, we found that β -cop bound strongly to the PA-beads 1a, and not at all to PtdIns(4,5)P₂ beads 2. The use of PtdIns(4,5)P₂ beads 2 as a control was verified with PLC δ [a known effector of PtdIns(4,5)P₂, vide supra]. Using the same conditions as above, PLC δ had a strong interaction with the PtdIns(4,5)P₂ beads 2, whereas its binding to PA-resin 1a was undetectable. The binding properties of immobilised PA 1b was found to be very similar to that of immobilised PA 1a.

The binding specificities of the lipid beads for potential partners were also characterised in lysates of tissue culture cells. COS-7 cells were lysed with the three types of detergents, ionic (deoxycholate), non-ionic (NP-40) and zwitterionic (CHAPS) at 0.5% each, and lysates were mixed with PA or PI(4,5)P₂ beads as indicated (Fig. 4). After binding and extensive washes,

Fig. 4 The specificity of binding to lipid-coupled beads from tissue culture lysates depends on lysis conditions. Lysates in each case represents 5% of the total used in binding.

the bound fraction was analysed by SDS-PAGE and immunoblotting. We found that non-ionic detergents (in this case NP-40 but also others used) maintain the specificity of PA for β -cop and PI(4,5)P₂ for PLC δ . Importantly, protein kinase C (PKC, an abundant cytosolic protein that binds acidic phospholipids and diacylglycerol) did not bind to PA beads 1a and PtdIns(4,5)P₂ beads 2 in the presence of NP-40. This further exemplified the fact that the binding specificity of PA and PtdIns(4,5)P₂ beads is maintained even in cell lysate provided a non-ionic detergent is used for lysis. Although we do not understand why other detergents show less specificity, we speculate that it may be related to their possible effects (such as denaturation or charge modification) on the target proteins.

In conclusion, we have reported the full synthesis of PA- and $PtdIns(4,5)P_2$ -coupled beads and have successfully used them as affinity matrices to identify PA-interacting proteins. A number of known proteins, Arf, kinesin, β -cop and NSF, all intracellular trafficking proteins, as well as several novel proteins were identified to bind to PA, specifically with reference to $PtdIns(4,5)P_2$. The observed binding profiles with these proteins and the high degrees of specificity warrant the further use of these materials in cellular biology as has been demonstrated by the general interest in the biological studies, full details of which can be found elsewhere.²⁰

Experimental

¹H NMR spectra were recorded on Bruker WM-250 (250 MHz), WM-400 (400 MHz) and WM-500 (500 MHz) instruments, using deuterochloroform (or other indicated solvents) as reference or internal deuterium lock. The chemical shift data for each signal are given in units of δ relative to tetramethylsilane where δ (tetramethylsilane) = 0. The multiplicity of each signal is indicated by: s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), qn (quintet), dd (doublet of doublets), ddd (doublet of doublet of doublets), dt (doublet of triplets) and m (multiplets). The number of protons (n) for a given resonance is indicated by nH. ¹³C NMR spectra were recorded on Bruker WM-250 (63.5 MHz), WM-400 (100 MHz) and WM-500 (125 MHz) instruments using an internal deuterium lock and proton decoupling. The chemical shift data for each signal are given as δ in units of parts per million (ppm) relative to tetramethylsilane where δ (tetramethylsilane) = 0. The multiplicity of each signal was determined by an applied proton test experiment. ³¹P NMR spectra were recorded on Bruker WM-250 (101 MHz) and WM-400 (162 MHz) instruments with proton decoupling. The chemical shift data for each signal are given as δ in units of parts per million (ppm) relative to external 85% H₃PO₄. Infrared spectra were recorded on a Perkin Elmer 1310 spectrometer. The sample was prepared as a solution in the indicated solvent. Calibration in each case was made relative to polystyrene at 1603 cm⁻¹. Mass spectra were recorded at both the EPSRC Mass Spectrometry Centre, University of Wales, Swansea and the University Chemical Laboratory. Microanalyses were carried out by the staff of the University Chemical Laboratory, Cambridge, Microanalytical Department. Melting points were determined using a Büchi 510 melting point apparatus and are uncorrected. Optical rotations were measured using a Perkin Elmer 241 polarimeter, in a cell of 1 dm path length. The concentration (c) is expressed in g 100 cm⁻³ (equivalent to g 0.1 dm⁻³) and values are given in 10^{-1} deg cm² g⁻¹.

(+)-1,2-O-Isopropylidene-3-O-(4-methoxybenzyl)-sn-glycerol 6

Sodium hydride (0.48 g, 60% dispersion in mineral oil, 12.00 mmol) was suspended in a solution of dry DMF (5 cm³) and cooled to 0 °C. (S)-(-)-2,2-Dimethyl-1,3-dioxolane-4methanol 5 (1.00 g, 7.56 mmol) was added dropwise and the solution was warmed to rt and stirred for 1 h. The reaction mixture was cooled to 0 °C and PMBCl (1.77 g, 1.53 cm³, 11.00 mmol) was added dropwise. The reaction mixture was stirred at rt overnight. The reaction was quenched by careful addition of water (15 cm³) and the aqueous phase was extracted with diethyl ether $(3 \times 15 \text{ cm}^3)$. The combined ethereal layers were washed with water (5 \times 10 cm³), brine (10 cm³), dried over MgSO₄ and solvent removed in vacuo. Flash chromatography (20-40% ethyl acetate in hexane) gave the PMB ether (+)-6 (1.71 g, 90%) as a colourless oil: $[a]_D^{20} = +23.7$ (c 1.45 in CHCl₃) [lit., ${}^{21}[a]_{D}^{21} = +21.8$ (c 1 in CHCl₃)]; δ_{H} (250 MHz; CDCl₃) 7.27– 7.24 (2 H, m, C_6H_4OMe), 6.89–6.85 (2 H, m, C_6H_4OMe), 4.53 (1 H, dd, J_{AB} 11.7, CH_AH_B), 4.47 (1 H, dd, J_{AB} 11.7, CH_AH_B), 4.28 (1 H, qn, J 6.3, CH₂CHCH₂), 4.04 (1 H, dd, J 8.2, 6.3, CH₂CHCH₂), 3.79 (3 H, s, OCH₃), 3.72 (1 H, dd, J 8.2, 6.3, CH₂CHCH₂), 3.53 (1 H, dd, J 9.7, 6.3, CH₂CHCH₂), 3.43 (1 H, dd, J 9.7, 6.3, CH₂CHCH₂), 1.41 (3 H, s, CH₃), 1.36 (3 H, s, CH_3).

(R)-3-(4-Methoxybenzyloxy)propane-1,2-diol 7

The PMB ether (+)-6 (7.07 g, 28.0 mmol) was hydrolysed with TsOH (0.28 g, 1.47 mmol) in methanol (10 cm³) to give the diol (-)-7. Flash chromatography eluting with ethyl acetate gave the diol (-)-7 (0.23 g, 73%) as a pale yellow solid: mp 41–43 °C (from ethyl acetate) [lit.,²² 43.5–45.1 °C (from toluene–light petroleum)]; $[a]_D^{22} = -1.12$ (c 3.04 in CHCl₃) [lit.,²² $[a]_D = -1.54$ (c 3.7 in CHCl₃)]; δ_H (250 MHz; CDCl₃) 7.24–7.21 (2 H, m, C₆H₄OCH₃), 6.87–6.84 (2 H, m, C₆H₄OCH₃), 4.44 (2 H, s, OCH₂), 3.85–3.80 (1 H, m, CH₂CHCH₂), 3.78 (3 H, s, OCH₃), 3.68–3.42 (3 H, m, CH₂CHCH₂), 3.53 (1 H, dd, J 9.7, 6.3, CH₂CHCH₂), 3.31 (1 H, d, J 4.5, OH), 2.96 (1 H, t, J 5.5, OH).

(+)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-3-*O*-(4-methoxybenzyl)-*sn*-glycerol 8

The diol (-)-7 (2.47 g, 12 mmol), DCC (2.64 g, 13 mmol) and DMAP (1.56 g, 13 mmol) were added to dry dichloromethane (100 cm³) under nitrogen and the reaction was stirred for 30 min at 0 °C. 12-N-(Benzyloxycarbonyl)aminododecanoic acid (2.27 g, 6.5 mmol) in dry dichloromethane (5 cm³) was transferred via cannula into the reaction mixture under nitrogen and stirred at rt overnight. The reaction was quenched by addition of water (50 cm³) and the aqueous phase was extracted with dichloromethane ($3 \times 40 \text{ cm}^3$). The combined organic extracts were washed with brine (20 cm³), dried over MgSO₄ and the solvent was removed in vacuo. Flash chromatography (30-60% ethyl acetate in hexane) of the residue gave alcohol (+)-8 (3.15 g, 89%) as a white solid: mp 50-51 °C (from ethyl acetate); $[a]_D^{20} = +1.7$ (c 0.52 in CHCl₃); $R_f = 0.48$ (50% ethyl acetate in hexane); v_{max} (CHCl₃)/cm⁻¹ 3689, 3585, 3540, 3004, 2931, 2856, 1720, 1655, 1612, 1514, 1463, 1454, 1252, 1234, 1174, 1132, 1101 and 1035; $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.35–7.28 (5 H, m, C₆ H_5), 7.25–7.22 (2 H, m, C_6H_4OMe), 6.88–6.86 (2 H, m, C_6H_4OMe), 5.08 (2 H, s, OCH₂), 4.84 (1 H, br s, NH), 4.50–4.42 (2 H, m, OCH₂), 4.18-4.00 (2 H, m, CH₂CHCH₂), 3.99-3.97 (1 H, m, CH₂CHCH₂), 3.79 (3 H, s, OCH₃), 3.51 (1 H, dd, J 9.6, 4.4, CH₂CHCH₂), 3.44 (1 H, J 9.6, 6.0, CH₂CHCH₂), 3.18–3.13 (2 H, m, CH₂NH), 2.70 (1 H, br s, OH), 2.35–2.28 (2 H, m, OCOCH₂), 1.61–1.56 (2 H, m, CH₂CH₂NH), 1.47–1.37 (2 H, m, OCOCH₂C H_2), 1.25 (16 H, br s, C₁₁ H_{22} NH); δ_C (100 MHz; CDCl₃) 173.9 (OCO), 159.4 (NHCO), 156.4 (CH₃OC), 136.7, 129.8, 129.4, 129.2, 128.4, 128.1, 113.9 (7 × C_6 H₅ and C_6 H₄), 73.1 (CH), 70.6, 68.9, 66.5, 65.4 (4 × CH₂), 55.2 (OCH₃), 41.1 (CH₂NH), 34.1, 29.9, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 26.7, 24.5 (10 × CH₂); m/z (CI, NH₃) [Found (M + H)⁺ 544.3302. C₃₁H₄₆O₇N requires M, 544.3274].

(+)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-hexadecanoyl-3-*O*-(4-methoxybenzyl)-*sn*-glycerol 9a

To a solution of alcohol (+)-8 (3.14 g, 5.7 mmol) in dry dichloromethane (20 cm³) under nitrogen was added DMAP (0.035 g, 0.29 mmol). The resulting solution was cooled to 0 °C and dry pyridine (0.68 g, 0.70 mL, 8.68 mmol) was added dropwise. After stirring for 30 min, palmitoyl chloride (1.75 g, 1.93 cm³, 6.37 mmol) was added dropwise under nitrogen and the reaction mixture was stirred overnight at rt. Water (50 cm³) was added to quench the reaction. The aqueous phase was extracted with diethyl ether (3 \times 50 cm³) and the ethereal layers were washed with 2 M hydrochloric acid (20 cm³). The acid phase was back-extracted with diethyl ether (50 cm³) and the combined ethereal layers were washed with brine (20 cm³), dried over MgSO4 and the solvent was removed in vacuo. Flash chromatography eluting with 50% ethyl acetate in hexane gave the ester (+)-9a (3.17 g, 70%) as a white solid (Found: C, 72.6; H, 9.85; N, 1.8. C₄₇H₇₅O₈N requires C, 72.2; H, 9.7; N, 1.8%); mp 44–47 °C (from ethyl acetate); $[a]_D^{20} = +5.5$ (c 0.59 in CHCl₃); $R_{\rm f} = 0.20 \, (20\% \, \text{ethyl acetate in hexane}); \, v_{\rm max} \, (\text{CHCl}_3) / \text{cm}^{-1} \, 3451,$ 2926, 2854, 1728, 1612, 1514, 1405, 1366, 1302, 1252, 1175 and 1110; $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.35–7.30 (5 H, m, C₆H₅), 7.24–7.22 (2 H, m, C_6H_4OMe), 6.88–6.86 (2 H, m, C_6H_4OMe), 5.23-5.21 (1 H, m, CH₂CHCH₂), 5.09 (2 H, s, OCH₂), 4.74 (1 H, br s, NH), 4.48 (1 H, dd, J_{AB} 12.0, OC H_A H_B), 4.44 (1 H, dd, J_{AB} 12.0, OCH_A H_B), 4.32 (1 H, dd, J 11.8, 3.8, C H_2 CHCH₂), 4.17 (1 H, dd, J 11.8, 6.4, CH₂CHCH₂), 3.80 (3 H, s, OCH₃), 3.55 (2 H, dd, J 5.1, 1.1, CH₂CHCH₂), 3.18 (2 H, q, J 6.6, CH_2NH), 2.33–2.25 (4 H, m, 2 × OCOC H_2), 1.66–1.56 (6 H, m, $2 \times OCOCH_2CH_2$, CH_2CH_2NH), 1.55–1.47 (2 H, m, CH_2CH_2 - CH_2NH), 1.25 (36 H, br s, $COC_{15}H_{3l}$, $C_{11}H_{22}NH$), 0.88 (3 H, t, J 6.6, CH_3); δ_C (100 MHz; CDCl₃) 173.4, 173.1 (2 × OCO), 159.3 (NHCO), 136.7, 129.8, 129.3, 129.0, 128.5, 128.06, 113.81 $(7 \times C_6 H_5 \text{ and } C_6 H_4)$, 72.9 (CH₂), 70.1 (CH), 70.0, 67.9, 66.5, $62.7 (4 \times CH_2)$, $55.8 (OCH_3)$, $41.1 (CH_2NH)$, 34.3, 34.1, 31.9, 29.9, 29.7, 29.5, 29.4, 29.3, 29.2, 29.1, 24.9, 24.8, 22.6 (13 \times CH_2), 14.1 (CH_3); m/z (CI, NH_3) [Found (M + H)⁺ 782.56140. $C_{47}H_{76}O_8N$ requires M, 782.55707].

(+)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-dodecanoyl-3-*O*-(4-methoxybenzyl)-*sn*-glycerol 9b

The alcohol (+)-8 (0.40 g, 0.70 mmol) was lauroylated according to procedure as described above for lipid (+)-9a affording the lipid (+)-9b (0.44 g, 86%) as a white solid (Found: C, 71.3; H, 9.2; N, 2.1. C₄₃H₆₇O₈N requires C, 71.1; H, 9.3; N, 1.9%); mp 41–43 °C (from ethyl acetate); $[a]_D^{20} = +6.6$ (c 0.8 in CHCl₃); $R_{\rm f} = 0.26 \, (30\% \, \text{ethyl acetate in hexane}); \, v_{\rm max} \, (\text{CHCl}_3) / \text{cm}^{-1} \, 3040,$ 2927, 2855, 1727, 1513, 1612, 1466, 1255, 1244, 1235, 1174, 1104 and 1035; $\delta_{\rm H}$ (250 MHz; CDCl₃) 7.35 (5 H, s, C₆H₅), 7.23 $(2 \text{ H}, d, J 8.6, C_6H_4\text{OMe}), 6.87 (2 \text{ H}, d, J 8.6, C_6H_4\text{OMe}), 5.26-$ 5.18 (1 H, m, CH₂CHCH₂), 5.10 (2 H, s, OCH₂), 4.49 (1 H, dd, J_{AB} 11.7, OCH_AH_B), 4.44 (1 H, dd, J_{AB} 11.7, OCH_AH_B), 4.33 (1 H, dd, J 11.9, 3.8, CH₂CHCH₂), 4.16 (1 H, dd, J 11.9, 6.4, CH₂CHCH₂), 3.80 (3 H, s, OCH₃), 3.52 (2 H, d, J 5.1, CH₂CHCH₂), 3.16 (2 H, q, J 6.7, CH₂NH), 2.31 (2 H, t, J 7.5, OCOCH₂), 2.27 (2 H, t, J 7.5, OCOCH₂), 1.61–1.46 (6 H, m, $2 \times OCOCH_2CH_2$, CH_2CH_2NH), 1.55–1.47 (2 H, m, CH_2CH_2 -CH₂NH), 1.26 (28 H, br s, COC₁₁H₂₃, C₁₁H₂₂NH), 0.88 (3 H, t, J 6.2, CH₃); δ _C (100 MHz; CDCl₃) 173.4, 173.1 (2 × OCO), 159.3 (NHCO), 136.7, 129.8, 129.3, 128.5, 128.1, 113.8 (6 × C_6H_5 and C_6H_5), 72.9 (CH₂), 70.4 (CH), 67.9, 66.5, 62.7 (4 ×

1070

 CH_2), 55.8 (OCH₃), 41.1 (CH₂NH), 34.3, 34.1, 31.9, 29.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 26.7, 24.9, 24.8, 22.6 (15 × CH₂), 14.1 (CH₃); m/z (CI, NH₃) [Found (M + H)⁺ 726.4947. $C_{43}H_{68}O_8$ N requires M, 726.4945].

(-)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-hexadecanoyl-*sn*-glycerol 10a

To a solution of dichloromethane (50 cm³) and water (5 cm³) under air was added ester (+)-9a (3.12 g, 4.00 mmol). Dichloro (dicyano)quinone (1.81 g, 8.00 mmol) was added and the reaction was stirred overnight at rt. The reaction was diluted with dichloromethane (50 cm³) and washed with saturated NaHCO₃ solution (20 cm³), brine (20 cm³), dried over MgSO₄ and the solvent removed in vacuo. Flash chromatography eluting with 40-50% ethyl acetate in hexane gave the alcohol (-)-10a (2.40 g, 91%) as an off-white solid (Found: C, 70.7; H, 10.1; N, 2.1. C₃₉H₆₇O₇N requires C, 70.7; H, 10.2; N, 2.1%); mp 56–58 °C; $[a]_{\rm D}^{20} = -3.2$ (c 1.02 in CHCl₃); $R_{\rm f} = 0.20$ (30% ethyl acetate in hexane); v_{max} (CHCl₃)/cm⁻¹ 3450, 2924, 2854, 1724, 1602, 1517. 1465, 1413, 1372, 1251 and 1164; $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.34– 7.25 (5 H, m, C_6H_5), 5.09–5.06 (3 H, m, CH_2CHCH_2) and OCH₂), 4.81 (1 H, br s, NH), 4.31 (1 H, dd, J 11.9, 3.8, CH₂CHCH₂), 4.17 (1 H, dd, J 11.9, 6.4, CH₂CHCH₂), 3.55 (2 H, dd, J 5.2, 1.2, CH₂CHCH₂), 3.18 (2 H, q, J 6.7, CH₂NH), 2.33-2.25 (4 H, m, $2 \times OCOCH_2$), 1.66-1.56 (6 H, m, $2 \times OCOCH_2$) OCOCH₂CH₂, CH₂CH₂NH), 1.56–1.47 (2 H, m, CH₂CH₂- CH_2NH), 1.25 (36 H, br s, $COC_{15}H_{31}$, $C_{11}H_{22}NH$), 0.87 (3 H, t, J 6.7, CH_3); δ_C (63 MHz; CDCl₃) 173.7, 173.4 (OCO), 156.4 (NHCO), 136.7, 128.5, 128.4, 128.1 (4 \times C_6 H₅), 72.1 (CH), 66.5, 62.4, 61.1 (3 × CH₂), 41.1 (NHCH₂), 34.1, 31.9, 29.7, $29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 24.9, 24.8, 22.7 (12 \times CH₂),$ 14.1 (CH_3); m/z (CI, NH_3) [Found (M + Na)⁺ 684.4828. $C_{39}H_{67}O_7NNa \text{ requires } M, 684.4816$].

(-)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-dodecanoyl-*sn*-glycerol 10b

The lipid (+)-9b (0.40 g, 0.55 mmol) was oxidised with DDQ (0.24 g, 0.11 mmol) as described above for alcohol (-)-10a to give alcohol (-)-10b (0.27 g, 91%) as a white solid (Found: C, 69.5; H, 9.8; N, 2.3. C₃₅H₅₉O₇N requires C, 69.4; H, 9.8; N, 2.3%); mp 55–58 °C (ethyl acetate–hexane); $[a]_D^{22} = -2.8$ (c 0.6 in CHCl₃); $R_f = 0.38$ (30% ethyl acetate in hexane); v_{max} (CHCl₃)/ cm^{-1} 3451, 3049, 3007, 2928, 2855, 1724, 1514, 1456, 1413, 1372, 1259, 1155 and 1111; $\delta_{\rm H}$ (250 MHz; CDCl₃) 7.34 (5 H, s, C_6H_5), 5.12–5.03 (3 H, m, CH₂CHCH₂ and OCH₂), 4.79 (1 H, br s, NH), 4.32 (1 H, dd, J 11.9, 4.5, CH₂CHCH₂), 4.25–4.13 (1 H, m, CH₂CHCH₂), 3.72 (2 H, br s, CH₂CHCH₂), 3.16 (2 H, q, J 6.4, CH_2NH), 2.37–2.28 (4 H, m, $2 \times OCOCH_2$), 1.62–1.48 (6 H, m, $2 \times OCOCH_2CH_2$, CH_2CH_2NH), 1.26 (30 H, br s, $COC_{11}H_{23}$, $C_{11}H_{32}NH$), 0.87 (3 H, t, J 6.9, CH_3); δ_C (100 MHz; CDCl₂) 173.7, 173.4 (OCO), 156.3 (NHCO), 136.6, 128.4, 128.1 $(3 \times C_6H_5)$, 72.1 (CH), 66.6, 62.0, 61.5 $(3 \times CH_2)$, 41.1 (NHCH₂), 34.3, 34.1, 31.9, 29.9, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 24.9, 24.8, 22.6 (14 × CH_2), 14.1 (CH_3); m/z (+ES) [Found (M + H) $^{+}$ 606.4367. C₃₅H₆₈O₇N requires M, 606.4370].

(+)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-hexadecanoyl-*sn*-glycerol 3-(dibenzyl phosphate) 11a

Dry dichloromethane (10 cm³) was added to a mixture of the alcohol (–)-10a (1.00 g, 1.51 mmol), 1H-tetrazole (1.04 g, 3.02 mmol) and (BnO)₂PNPr $_2^i$ (0.31 g, 4.54 mmol). The reaction mixture was stirred at rt for 2 h. The reaction mixture was cooled to -78 °C and MCPBA (1.43 g, 8.3 mmol) was added in one portion. The reaction mixture was warmed to rt over 2 h and stirred overnight. The reaction mixture was diluted with dichloromethane (30 cm³) and washed with 10% NaHSO₃ solution (50 cm³). The aqueous phase was back-extracted with dichloromethane (2 × 50 cm³). The combined organic extracts

were washed with saturated NaHCO₃ solution (20 cm³), brine (20 cm³), dried over MgSO₄ and concentrated. The residue was chromatographed (40% ethyl acetate in hexane) affording phosphate 11a (1.14 g, 82%) as a white solid (Found: C, 69.2; H, 8.8; N, 1.5; P, 3.4. C₅₃H₈₀O₁₀NP requires C, 69.0; H, 8.75; N, 1.5; P, 3.4%); mp 40–42 °C (from ethyl acetate–hexane); $[a]_{\rm D}^{25} = +1.75$ (c 0.23 in CHCl₃); $R_{\rm f} = 0.11$ (30% ethyl acetate in hexane); v_{max} (CHCl₃)/cm⁻¹ 3542, 3022, 2853, 1733, 1601, 1512, 1433, 1222, 1217 and 1032; $\delta_{\mathbf{P}}$ (101 MHz; CDCl₃) -0.64; $\delta_{\rm H}$ (400 MHz; CDCl₃) 7.37–7.27 (15 H, m, C₆H₅), 5.16–5.13 (1 H, m, CH_2CHCH_2), 5.08-5.00 (6 H, m, 3 × OCH_2), 4.85 (1 H, br s, NH), 4.25 (1 H, dd, J 11.9, 4.4, CH₂CHCH₂), 4.13– 4.05 (3 H, m, CH₂CHCH₂), 3.19–3.14 (2 H, m, CH₂NH), 2.28– 2.23 (4 H, m, $2 \times OCOCH_2$), 1.58–1.57 (4 H, m, $2 \times OCO$ -CH₂CH₂), 1.48–1.46 (2 H, m, CH₂CH₂NH), 1.25 (38 H, br s, $COC_{15}H_{31}$, $C_{11}H_{22}NH$), 0.87 (3 H, t, J 6.6, CH_3); δ_C (63 MHz; CDCl₃) 173.1, 172.7 (2 × OCO), 156.4 (NHCO), 136.7, 135.6, 135.5 (3 × CH_2C), 128.6, 128.5, 128.1, 128.0, 127.9, 127.8 $(6 \times C_6 H_5)$, 69.5 (d, J_{C-P} 5.5, CH_2), 69.4 (d, J_{C-P} 10.1, CH), 69.3, 66.5 (2 × CH₂), 65.4 (d, J_{C-P} 5.4, CH₂), 61.6 (CH₂), 41.10 (CH₂NH), 34.1, 33.9, 31.9, 29.68, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 26.7, 24.8, 22.7 (15 × CH_2), 14.11 (CH_3); m/z (FAB) [Found (M + Na)⁺ 944.5417. $C_{53}H_{80}O_{10}NPNa$ requires M, 944.5427].

(+)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-dodecanoyl-*sn*-glycerol 3-(dibenzyl phosphate) 11b

The alcohol (-)-10b (0.23 g, 0.33 mmol) was phosphorylated, according to the procedure described above for phosphate (+)-11a, to give the phosphate (+)-11b (0.25 g, 97%) as a colourless gum (Found: C, 67.9; H, 8.4; N, 1.7; P, 3.8. C₄₉H₇₂O₁₀NP requires C, 67.9; H, 8.4; N, 1.6; P, 3.6%); $[a]_D^{23} = +4.0$ (c 0.2 in CHCl₃); $R_f = 0.5$ (50% ethyl acetate in hexane); v_{max} (CDCl₃)/ cm⁻¹ 2928, 2855, 1735, 1515, 1464, 1456, 1415, 1377, 1264, 1166, 1102 and 1019; δ_{P} (101 MHz; CDCl₃) -0.36; δ_{H} (500 MHz; CDCl₃) 7.49–7.28 (15 H, m, $3 \times C_6H_5$), 5.16 (1 H, qn, J 4.9, CH₂CHCH₂), 5.09 (2 H, s, OCH₂), 5.05–5.99 (4 H, m, $2 \times OCH_2$, 4.76 (1 H, br s, NH), 4.25 (1 H, dd, J 11.9, 4.9, CH,CHCH₂), 4.14-4.05 (3 H, m, CH₂CHCH₂), 3.18 (2 H, q, J 6.5, CH_2NH), 2.26 (4 H, q, J 7.5, 2 × OCOC H_2), 1.58–1.57 $(4 \text{ H, m, } 2 \times \text{OCOCH}_2\text{C}H_2), 1.48-1.47 (2 \text{ H, m, } \text{C}H_2\text{C}\text{H}_2\text{NH}),$ 1.14 (30 H, br s, $COC_{11}H_{23}$, $C_{11}H_{22}NH$), 0.88 (3 H, t, J 6.7, CH_3); δ_C (63 MHz; CDCl₃) 173.2, 172.8 (OCO), 156.4 (NHCO), 136.7, 135.6 (2 × CH₂C), 128.6, 128.5, 128.0 (3 × C_6 H₅), 69.5 (d, J_{C-P} 5.6, CH_2), 69.4 (d, J_{C-P} 4.3, CH), 66.9 (CH_2), 65.4 (d, J_{C-P} 5.4, CH_2), 61.6 (CH_2), 41.1 (CH_2 NH), 34.1, 34.0, 31.9, $30.0, 29.6, 29.5, 29.4, 29.3, 29.1, 26.7, 24.8, 22.7 (12 \times CH₂),$ 14.1 (CH₃); m/z (+ES) [Found (M + H)⁺ 866.4971. $C_{49}H_{73}O_{10}NP$ requires M, 866.4971].

(-)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-hexadecanoyl-*sn*-glycerol 3-(disodium phosphate) 3a

To a solution of tert-butyl alcohol (18 cm³) and water (3 cm³) in a glass tube was added the benzyl phosphate (+)-11a (0.1 g, 0.11 mmol). The reaction mixture was placed in an autoclave and the glass tube and autoclave were vented with hydrogen four and five times respectively. The autoclave was finally pressurised to 15 bar and stirred for 18 h. The pressure was slowly released and the reaction mixture was centrifuged. The tert-butyl alcohol-water layer was discarded and the residue was washed with methanol-chloroform (1:1 v/v, 20 cm³). The suspension was centrifuged and the organic layer was collected and passed through a pad of Celite. The filtrate was centrifuged to remove traces of Celite and the organic layer was collected and concentrated in vacuo affording phosphate 3a (0.052 g, 78%) as a white solid: $[a]_D^{20} = -8.9$ [c 0.09 in CH₃OH–CHCl₃ (1 : 1)]; v_{max} (KBr)/cm⁻¹ 3838, 2918, 2849, 1732, 1684, 1469, 1417, 1382, 1242, 1166, 1044 and 937; δ_P [101 MHz; CD₃OD– CDCl₃ (1 : 1)] 1.31; δ_H [500 MHz; CD₃OD–CDCl₃ (1 : 1)] 4.88 (1 H, br s, CH₂CHCH₂), 4.13 (1 H, dd, J 12.0, 3.0, CH₂-CHCH₂), 3.83 (1 H, dd, J 12.0, 3.0, CH₂CHCH₂), 3.66–3.64 (2 H, m, CH₂CHCH₂), 2.55 (2 H, t, J 7.6, CH₂NH₂), 2.01–1.98 (4 H, m, 2 × COCH₂), 1.33–1.28 (6 H, m, 2 × COCH₂CH₂, CH₂CH₂NH₂), 0.98–0.92 (38 H, m, COC₁₅H₃₁, C₁₁H₂₂NH), 0.54 (3 H, t, J 6.5, CH₃); δ _C [500 MHz; CD₃OD–CDCl₃ (1 : 1)] 173.5, 173.1 (2 × q), 70.2, 62.0 (2 × glycerol carbons), 39.0, 33.6, 33.6, 33.3, 31.3, 29.0, 28.8, 28.7, 28.5, 27.7, 27.6, 27.4, 27.2, 26.7, 25.3, 24.2, 23.8, 22.0, 13.1 (19 × d); m/z (+ES) [Found (M + H)⁺ 608.4291]. C₃₁H₆₃O₈NP requires M, 608.4292].

(-)-1-*O*-[12-*N*-(Benzyloxycarbonyl)aminododecanoyl]-2-*O*-dodecanoyl-*sn*-glycerol 3-(disodium phosphate) 3b

To a solution of (-)-11b (0.069 g, 0.07 mmol) in tert-butyl alcohol-water (6: 1 v/v, 18 cm³) at rt were added Pd black (0.026 g, 0.15 mmol) and NaHCO₃ (0.013 g, 0.15 mmol). The reaction mixture was stirred under an atmosphere of hydrogen for 18 h. The reaction mixture was centrifuged and the tertbutyl alcohol-water layer was discarded. The residue was washed with methanol-chloroform (1: 1 v/v, 20 cm³). The suspension was centrifuged and the organic layer was collected and passed through a pad of Celite. The filtrate was centrifuged to remove traces of Celite and the organic layer was collected and concentrated in vacuo affording phosphate (-)-3b (0.043 g, 99%) as a white solid: $[a]_D^{18} = -7.3$ [c 0.055 in CH₃OH-CHCl₃ (1:1)]; v_{max} (Nujol)/cm⁻¹ 3384, 1718, 1169, 1042 and 935.6; $\delta_{\rm P}$ [162 MHz; CD₃OD–CDCl₃ (1 : 1)] 1.37; $\delta_{\rm H}$ [500 MHz; CD₃OD-CDCl₃ (1 : 1)] 4.91-4.89 (1 H, m, CH₂CHCH₂), 4.17 (1 H, dd, J 12.0, 3.0, CH₂CHCH₂), 3.84 (1 H, dd, J 12.0, 6.6, CH₂CHCH₂), 3.65-3.59 (2 H, m, CH₂CHCH₂), 2.55 (2 H, t, J 7.6, CH_2NH_2), 2.01–1.98 (4 H, m, 2 × $COCH_2$), 1.34–1.27 $(6 \text{ H, m, } 2 \times \text{COCH}_2\text{C}H_2, \text{C}H_2\text{C}\text{H}_2\text{N}\text{H}_2), 0.99-0.94 (30 \text{ H, m,})$ $COC_{11}H_{23}$, $C_{11}H_{22}NH$), 0.55 (3 H, t, J 6.6, CH_3); δ_C [100 MHz; $CD_3OD-CDCl_3$ (1 : 1)] 173.0, 173.7 (2 × CO), 69.8 (d, J 8.2, CH_2), 62.2, 61.6 (2 × glycerol carbons), 38.6 (CH_2NH_2), 33.1, 32.9, 30.9, 28.6, 28.5, 28.4, 28.3, 28.0, 27.6, 27.4, 27.3, 26.3, 25.1, 23.8, 23.5, 21.6 ($16 \times CH_2$), 12.7 (CH_3); m/z(-ES) [Found $(M - H)^-$ 550.3508. $C_{31}H_{63}O_8NP$ requires M, 550.3509].

(–)-5-O-Allyl-2,6-di-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol 16

A solution of the camphor acetal (-)-15 (0.062 g, 0.950 mmol)in methanol-dichloromethane (v/v 3 : 5, 16 cm³) was stirred with acetyl chloride (41 µL, 0.57 mmol) at rt for 1 h. Triethylamine (0.5 cm³) was added and the solution was concentrated. Flash chromatography (50% ethyl acetate in hexane) of the residue yielded (-)-16 (0.041 g, 82%) as a white solid: mp 125– 126 °C (from ethyl acetate-hexane) [lit., 15 mp 125-126 °C (ethyl acetate-light petroleum)]; $[a]_D^{20} = -26.6$ (c 1.0 in CHCl₃) [lit., ¹⁵ $[a]_{\rm D}^{28} = -26.4 (c \ 1.2 \text{ in CHCl}_3)]; \delta_{\rm H} (250 \text{ MHz; CDCl}_3) \ 7.35 - 7.24$ $(12 \text{ H, m}, 2 \times \text{C}_6H_5, \text{C}_6H_4\text{OMe}), 6.85 (2 \text{ H, d}, J 8.0, \text{C}_6H_4\text{OMe}),$ 5.99-5.92 (1 H, m, CHCH₂), 5.27 (1 H, dd, J 17.2, 1.6, CHCH₂), 5.16 (1 H, d, J 10.4, CHCH₂), 5.04 (1H, dd, J_{AB} 11.5, OCH_AH_B), 4.89 (1 H, dd, J_{AB} 10.7, OCH_AH_B), 4.85 (1 H, dd, J_{AB} 10.7, OCH_A H_B), 4.66 (2 H, dd, J_{AB} 11.5, 2 × OCH_A H_B), 4.61 (1 H, dd, J_{AB} 11.5, OCH_A H_B), 4.40 (1 H, dd, J 12.5, 5.5, OCH₂), 4.26 (1 H, dd, J 12.5, 5.9, OCH₂), 3.98 (1 H, t, J 2.5, 2-H), 3.93 (1 H, t, J 9.5, 6-H), 3.81 (3 H, s, OCH₃), 3.78 (1 H, dd, J 9.5, 2.5, 3-H), 3.43 (1 H, dd, J 9.5, 2.5, 1-H), 3.36 (1 H, dt, J 9.5, 2.0, 4-H), 3.19 (1 H, t, J 9.5, 5-H), 2.51 (1 H, d, J 2.0, OH), 2.25 (1 H, d, J 8.0, OH).

(-)-5-O-Allyl-1-O-(4-methoxybenzyl)-2,3,6-tri-O-benzyl-myo-inositol 17

A mixture of the diol (-)-16 (0.16 g, 0.307 mmol), Bu₂SnO (0.084 g, 0.34 mmol), tetrabutylammonium bromide (0.099 g; 0.307 mmol) and benzyl bromide (0.25 g, 1.47 mmol) in

acetonitrile (20 cm³) was stirred under reflux with removal of water using a Soxhlet apparatus filled with 3 Å molecular sieves. After 21 h the solution was concentrated to dryness. The residue was suspended in water (15 cm³) and extracted with ethyl acetate ($2 \times 20 \text{ cm}^3$). The organic fractions were combined and stirred with saturated NaHCO₃ solution (15 cm³), filtered over Hyflo, and the layers were separated. The organic phase was washed with brine (10 cm³) and dried over Na₂SO₄. Evaporation of the solvent and purification by flash chromatography (30-40% diethyl ether in hexane) afforded the 3benzyl ether (-)-17 (0.14 g, 75%) as a colourless oil that solidified upon standing. Further purification was achieved by stirring in hexane-ethyl acetate to give the pure product (-)-17 as a white powder (Found: C, 74.7; H, 7.0. C₃₉H₄₂O₇ requires C, 74.7; H, 6.9%); mp 60–61 °C (from ethyl acetate–hexane); $[a]_D^{20} =$ -0.6 (c 0.4 in CHCl₃); $R_{\rm f}$ 0.16 (40% diethyl ether in hexane); v_{max} (CHCl₃)/cm⁻¹ 3462, 3030, 2873, 1612, 1586, 1513, 1454, $^{\text{max}}_{1360, 1302, 1248, 1052, 925, 821}$ and 735 ; δ_{H} (250 MHz; CDCl₃) 7.40–7.21 (17 H, m, $3 \times C_6 H_5$, $C_6 H_4 OMe$), 6.85 (2 H, d, J 8.6, C₆H₄OMe), 6.05-5.89 (1 H, m, CHCH₂), 5.27 (1 H, d, J 17.2, 1.5, CHCH₂), 5.15 (1 H, d, J 10.4, 1.5, CHCH₂), 4.90–4.75 (4 H, m, OCH_2), 4.63–4.51 (4 H, m, OCH_2), 4.36–4.33 (2 H, m, OCH₂), 4.10 (1 H, dt, J 9.5, 1.8, inositol H), 4.01–3.94 (2 H, m, inositol H), 3.82 (3 H, s, OCH₃), 3.32 (1 H, dd, J 9.5, 2.2, inositol H), 3.23 (1 H, t, J 9.2, inositol H), 3.16 (1 H, dd, J 9.8, 2.1, inositol H), 2.50 (1 H, d, J 1.8, OH); $\delta_{\rm C}$ (100 MHz; CDCl₃) 159.2 (COMe), 138.9, 138.0, 135.3, 130.5 (4 × C), 129.2, 128.5, $128.3, 128.1, 128.1, 127.8, 127.7, 127.5, 127.3 (9 \times C_6H_5, C_6H_4),$ 116.7 (CH), 113.8 (CH₂), 83.0, 81.4, 80.8, 80.0, 75.7, 74.2, 74.0, 73.8, 72.7, 72.5, 72.3 (6 × inositol C, 5 × CH_2), 55.3 (O CH_3); m/z (+ES) [Found (M + NH₄)⁺ 628.3275. C₃₈H₄₆O₇N requires M, 628.3274].

(+)-1-O-(4-Methoxybenzyl)-2,3,6-tri-O-benzyl-myo-inositol 18

To a solution of the allyl ether (-)-17 (0.024 g, 0.039 mmol)and diisopropylethylamine (2.0 µL, 0.012 mmol) in ethanoltoluene-water $(7:3:1, 5 \text{ cm}^3)$ was added $(Ph_3P)_3RhCl$ $(5.5 \mu g)_3$ 5.9 µmol) and the solution refluxed for 2 h, then cooled to rt. The mixture was filtered over Hyflo and washed with ethyl acetate. The filtrate was concentrated to dryness, suspended in water (5 cm³) and extracted with ethyl acetate (3 \times 5 cm³). The combined organic layers were washed with brine (5 cm³) and dried over MgSO₄ to give the crude propenyl ether as a brown oil (mixture of geometric isomers). The brown oil was dissolved in dichloromethane-methanol (5:3, 3 cm³) and acetyl chloride (2 μL, 24 μmol) was added. The solution was stirred at rt for 30 mins, followed by quenching with three drops of triethylamine and concentrated. Flash chromatography (30-50% ethyl acetate in hexane) afforded the diol (+)-18 (0.013 g, 58%) as a white solid: mp 104–106 °C (from ethyl acetate–hexane); $[a]_D^{20} =$ +16.9 (c 0.7 in CHCl₃) [lit., ¹⁹ [a]_D²⁰ = +12.8 (c 1 in CHCl₃)]; δ _H (250 MHz; CDCl₃) 7.42–7.22 (17 H, m, 3 × C₆H₅, C_6H_4OMe), 6.87 (2 H, d, J 8.7, C_6H_4OMe), 5.00–4.75 (4 H, m, $2 \times OCH_2$), 4.63–4.51 (4 H, m, $2 \times OCH_2$), 4.10–4.01 (2 H, m, 2 × inositol H), 3.91 (1 H, t, J 9.3, inositol H), 3.82 (3 H, s, OCH₃), 3.43 (1 H, t, J 9.3, inositol H), 3.37 (1 H, dd, J 9.7, 2.3, inositol H), 3.19 (1 H, dd, J 9.7, 2.3, inositol H); 2.55 (2 H, br s, $2 \times OH$).

(+)-6-*O*-Benzyl-2,3-*O*-cyclohexylidene-4,5-di-*O*-allyl-1-*O*-(4-methoxybenzyl)-*myo*-inositol 20

Sodium hydride (0.096 mg, 60% dispersion in mineral oil, 2.4 mmol) was washed with dry hexane under argon. After removal of the solvent, the residual solid was suspended in DMF (3 cm³) and cooled to 0 °C. A solution of the alcohol (+)-19 (0.047 g, 1.00 mmol) in DMF (7 cm³) was added *via* cannula with stirring. The suspenson was stirred for 15 mins at 0 °C and allyl bromide (190 μ L, 2.20 mmol) was added dropwise. The temperature was slowly increased to rt and the suspension was

stirred for 14 h. The reaction was quenched by the addition of methanol (0.5 cm³) and the solvent was removed in vacuo. The residue was partitioned between ethyl acetate (30 cm³) and water (15 cm³). The organic layer was separated and the aqueous layer extracted with ethyl acetate (20 cm³) and the combined organic extracts were washed with water (15 cm³), brine (15 cm³) and dried over Na₂SO₄. Evaporation of the solvent and flash chromatography eluting with 30% diethyl ether in hexane afforded the diallyl ether (+)-20 (0.049 g, 89%) as a colourless oil: $[a]_D^{20} = +28.8$ (c 0.9 in CHCl₂); R_f 0.18 (30%) ether–hexane); v_{max} (CCl₄)/cm⁻¹ 2936, 2864, 1612, 1463, 1354, 1249, 1163 and $\overline{1072}$; $\delta_{\rm H}$ (250 MHz; CDCl₃) 7.38–7.26 (7 H, m, C_6H_5 , C_6H_4OMe), 6.85 (2 H, d, J 8.7, C_6H_4OMe), 6.01–5.90 (2 H, m, CHCH₂), 5.32–5.13 (4 H, m, CHCH₂), 4.84 (1 H, dd, J_{AB} 10.8, OC H_AH_B), 4.79 (1 H, dd, J_{AB} 10.8, OC H_AH_B), 4.75 $(1 \text{ H}, \text{dd}, J_{AB} 11.9, \text{OC}H_4H_B), 4.69 (2 \text{ H}, \text{dd}, J 11.9, \text{OC}H_AH_B),$ 4.34-4.18 (5 H, m, OCH₂, inositol H), 3.97 (1 H, t, J 5.8, inositol H), 3.85 (1 H, t, J 8.6, inositol H), 3.80 (3 H, s, OCH₃), 3.63–3.57 (2 H, m, inositol H), 3.19 (1 H, t, J 8.6, inositol H), 1.76–1.44 (10 H, m, 10 × cyclohexyl H); $\delta_{\rm C}$ (63 MHz; CDCl₃) 159.4 (COMe), 138.8, 135.5, 135.4, 130.4, 129.6, 128.4, 128.1, $127.6 (8 \times C_6 H_5, C_6 H_4), 116.7 (CH), 113.8 (CH_2), 110.3 (CO_2),$ 82.5, 81.9, 80.9, 78.7, 77.7, 75.3, 74.2, 74.1, 73.0, 72.7 (6 × inositol C, 4 × CH₂), 55.3 (OCH₃), 35.2, 25.1, 24.0, 23.7 $(4 \times CH_2)$; m/z (CI, NH₃) [Found (M + NH₄)⁺ 568.3274. $C_{33}H_{46}O_7N$ requires M, 568.3274].

(+)-6-*O*-Benzyl-4,5-di-*O*-allyl-1-*O*-(4-methoxybenzyl)-*myo*-inositol 21

A solution of the acetal (+)-20 (0.048 g; 0.88 mmol) in methanol-dichloromethane (1:3, 16 cm³) was stirred with acetyl chloride (70 µL; 0.98 mmol) at rt for 3 h. Triethylamine (300 µL, 2.15 mmol) was added and the solution was concentrated. Flash chromatography (50% ethyl acetate in hexane) of the residue yielded (+)-21 (0.037 g, 88%) as a white solid (Found: C, 68.4; H, 7.2. C₂₇H₃₄O₇ requires C, 68.9; H, 7.3%); mp 108–110 °C (from hexane–ethyl acetate); $[a]_D^{20} = +12.5$ (c 0.4 in CHCl₃); R_f 0.14 (50% ethyl acetate in hexane); v_{max} (CHCl₃)/ cm⁻¹ 3582, 3012, 1612, 1456, 1359, 1303, 1125 and 1070; $\delta_{\rm H}$ (250 MHz; CDCl₃) 7.35–7.24 (7 H, m, C₆H₅, C₆H₄OMe), 6.85 (2 H, d, J 8.5, C_6H_4OMe), 6.05–5.90 (2 H, m, $CHCH_2$), 5.33–5.14 $(4 \text{ H}, \text{ m}, \text{CHC}H_2), 4.86 (1 \text{ H}, \text{dd}, J_{AB} 10.8, \text{OC}H_4\text{H}_B), 4.80 (1 \text{ H},$ dd, J_{AB} 10.8, OCH_AH_B), 4.66 (1 H, dd, J_{AB} 12.1, OCH_AH_B), 4.60 (1 H, dd, J_{AB} 12.1, OCH_A H_B), 4.46–4.22 (4 H, m, OC H_2), 4.15 (1 H, br s, inositol H), 3.85 (1 H, t, J 9.5, inositol H), 3.80 (3 H, s, OCH₃), 3.65 (1 H, t, J 9.5, inositol H), 3.36–3.41 (2 H, m, inositol H), 3.26 (1 H, t, J 9.5, inositol H), 2.66-2.62 (2 H, m, OH); δ_C (63 MHz; CDCl₃) 159.4 (COMe), 138.8, 135.2, 135.1, 130.0, 129.5, 128.4, 128.0, 127.6 (8 × C_6H_5 , C_6H_4), 117.1, 116.7 $(2 \times CH)$, 113.9 (CH_2) , 82.9, 81.6, 80.8, 79.6, 75.9, 74.4, 74.3, 72.5, 71.6, 69.3 (10 × inositol C, 4 × CH_2), 55.3 (O CH_3); m/z(CI, NH₃) [Found (M + NH₄) $^{+}$ 488.2650. C₂₇H₃₈O₇N requires M, 488.2648].

(–)-2,3,6-Tri-O-benzyl-4,5-di-O-allyl-1-O-(4-methoxybenzyl)-myo-inositol 22

Sodium hydride (0.074 g, 60% dispersion in mineral oil, 1.85 mmol) was washed with dry hexane under argon. After removal of the solvent, the residual solid was suspended in DMF (3 cm³) and cooled to 0 °C. A solution of the diol (+)-21 (0.036 g, 0.77 mmol) in DMF (5 cm³) was added *via* a cannula with stirring. The suspenson was stirred for 15 mins at the same temperature, and benzyl bromide (201 µL, 1.69 mmol) was added dropwise. The temperature was slowly increased to rt and the suspension was stirred for 14 h. The reaction was quenched by the addition of methanol (0.5 cm³) and the solvent was removed *in vacuo*. The residue was partitioned between ethyl acetate (25 cm³) and water (15 cm³). The organic layer was

separated and the aqueous layer extracted with ethyl acetate (25 cm³) and the combined organic extracts were washed with water (20 cm³), brine (15 cm³) and dried over MgSO₄. Evaporation of the solvent and flash chromatography eluting with 5-30% diethyl ether in hexane afforded the tribenzyl ether (-)-22 (0.045 g, 91%) as a colourless oil which solidified upon standing (Found: C, 75.55; H, 7.2. C₄₁H₄₆O₇ requires C, 75.7; H, 7.1%); mp 57–60 °C (from diethyl ether-hexane); $[a]_D^{14} =$ -8.2 (c 0.5 in CHCl₃); R_f 0.12 (30% diethyl ether in hexane); v_{max} (CCl₄)/cm⁻¹ 3032, 2879, 1514, 1454, 1358, 1249, 1132 and 1075; $\delta_{\rm H}$ (250 MHz; CDCl₃) 7.44–7.23 (17 H, m, 3 × C₆ H_5 , C_6H_4OMe), 6.87 (2 H, d, J 8.6, C_6H_4OMe), 6.09–5.93 (2 H, m, CHCH₂), 5.34–5.26 (2 H, m, CHCH₂), 5.17 (2 H, d, J 10.3, $CHCH_2$), 4.92–4.80 (4 H, m, 2 × OCH_2), 4.71–4.51 (4 H, m, 2 × OCH_2), 4.43–4.29 (4 H, m, 2 × OCH_2), 4.02–3.94 (2 H, m, inositol H), 3.90 (1 H, t, J 9.6, inositol H), 3.83 (3 H, s, OC H_3), 3.55–3.24 (3 H, m, inositol H); $\delta_{\rm C}$ (63 MHz; CDCl₃) 159.2 (COMe), 139.1, 138.6, 153.5, 130.6 (4 × C), 129.2, 128.4, 128.1, 127.8, 127.5 (5 × C_6H_5 , C_6H_4), 116.5 (CH), 113.8 (CH₂), 83.4, 81.6, 81.4, 80.7, 80.5, 75.8, 74.7, 74.5, 74.1, 72.9, 72.5 (6 \times inositol C, $5 \times CH_2$), 55.3 (OCH₃); m/z (CI, NH₃) [Found (M + NH_4)⁺ 668.3576. $C_{41}H_{50}O_7N_7$ requires M, 668.3587].

(+)-1D-1-O-(4-Methoxybenzyl)-2,3,6-tri-O-benzyl-myo-inositol 18

To a solution of the diallyl ether (-)-22 (0.27 g, 0.42 mmol) and DIPEA (44 µL, 0.25 mmol) in ethanol-toluene-water (7:3:1, 20 cm³) was added (Ph₃P)₃RhCl (0.12 g, 0.13 mmol) and the solution refluxed for 2 h. The reaction mixture was then cooled to rt and diluted with water (15 cm³) and diethyl ether (30 cm³) and any insoluble material was removed by filtration under vacuum. The layers were separated and the aqueous phase was extracted with diethyl ether $(2 \times 20 \text{ cm}^3)$. The combined organic layers were washed with brine $(2 \times 15 \text{ cm}^3)$, dried over Na₂SO₄ and evaporated. Flash chromatography eluting with 15% diethyl ether in hexane afforded the diprop-2-enyl ether as a mixture of geometric isomers (0.24 g, 87%) as a brown oil. The brown oil was dissolved in dichloromethane-methanol (2: 1, 21 cm³) and acetyl chloride (13 μL, 0.17 mmol) was added. The solution was stirred at rt for 30 min, followed by quenching with triethylamine (69 µL, 0.50 mmol) and concentrated. Flash chromatography (30–60% ethyl acetate in hexane) afforded the diol (+)-18 (0.19 g, 90%) as a white solid: $[a]_D^{20}$ = +17.4 (c 0.9 in CHCl₃); ¹H NMR data and mp were identical to those of the material prepared above.

(+)-1D-2,3,6-Tri-O-benzyl-1-O-(4-methoxybenzyl)-myo-inositol 4,5-bis(dibenzyl phosphate) 23

A solution of the alcohol (+)-18 (0.23g, 0.39 mmol) in dichloromethane (5 cm3) was added via cannula to a mixture of (BnO)₂PNPrⁱ₂ (0.55 g, 1.58 mmol) and 1*H*-tetrazole (0.22 g, 3.15 mmol) in dichloromethane (10 cm³). After stirring at rt for 5 h, the reaction mixture was cooled to -78 °C and MCPBA (0.57 g, 3.31 mmol) was added in a single portion. After 1 h, the temperature was increased to rt and stirring was continued for 1 h. The reaction mixture was diluted with dichloromethane (10 cm³) and washed with 10% NaHSO₃ solution (15 cm³). The aqueous phase was extracted with dichloromethane (2×1) 15 cm³) and the combined dichloromethane extracts were washed with water (10 cm³), brine (10 cm³) and dried over Na₂SO₄. The residue obtained after evaporation was purified by flash chromatography (30-50% ethyl acetate in hexane) to afford the fully protected phospholipid (-)-23 (0.32 g, 75%) as a colourless oil; $[a]_D^{23} = -11.1$ (c 1 in CHCl₃) [lit., ¹⁹ $[a]_D^{27} = -10.2$ (c 1 in CHCl₃)]; δ_P (162 MHz; CDCl₃) -1.71, -2.11 [lit., ¹⁹ δ_P (162 MHz; CDCl₃) -1.75, -2.15]; $\delta_{\rm H}$ (250 MHz; CDCl₃) 7.41– 6.99 (37 H, m, $7 \times C_6H_5$, C_6H_4 OMe), 6.80 (2 H, d, J 8.7, C_6H_4OMe), 5.13–4.81 (12 H, m, 6 × CH_2), 4.75–4.45 (6 H, $2 \times \text{CH}_2$, $2 \times \text{inositol H}$), 4.10 (1 H, t, J 9.5, inositol H), 3.91 (1 H, br s, inositol H), 3.81 (3 H, s, OCH₃), 3.46–3.36 (2 H, m, inositol H).

(-)-1D-2,3,6-Tri-*O*-benzyl-*myo*-inositol 4,5-bis(dibenzyl phosphate) 24

A solution of ceric ammonium nitrate (0.22 g, 0.39 mmol) in acetonitrile–water (4:1, 3.75 cm³) was added to the bis-(dibenzyl phosphate) (-)-23 (0.070 g, 0.064 mmol) at 0 °C and stirred for 1 h. Water was added (10 cm³) and the reaction mixture was extracted with ethyl acetate (3 × 10 cm³). The combined organic layers were washed with saturated NaHCO₃ solution (10 cm³), brine (10 cm³), dried over MgSO₄ and concentrated. The residue was chromatographed with 50–80% ethyl acetate in hexane to afford the bis(dibenzyl phosphate) (-)-24 (0.023 g, 80%) as a colourless oil: $[a]_D^{20} = -17.8$ (c 1.66 in CHCl₃) [lit., $^{19} [a]_D^{25} = -15.6$ (c 1 in CHCl₃)]; δ_P (162 MHz; CDCl₃) -1.55, -1.82]; δ_H (250 MHz; CDCl₃) 7.36–7.08 (35 H, m, 7 × C₆H₅), 5.12–4.90 (11 H, m, 5 × CH₂, inositol H), 4.86–4.48 (5 H, 2 × CH₂, inositol H), 3.94 (1 H, t, *J* 2.3, inositol H), 3.86 (1 H, br s, inositol H), 3.59–3.50 (2 H, m, inositol H), 2.14 (1 H, s, OH).

(+)-(Benzyloxy){1-O-[12-N-(benzyloxycarbonyl)aminododecanoyl]-2-O-hexadecanoyl-sn-glycer-3-O-yl}(N,N-diisopropyl-amino)phosphine 12

A solution of (BnO)P(NP r_2)₂ (0.022 g, 0.66 mmol) in dichloromethane (3 cm³) was added via cannula to a stirred mixture of the glycerol **10a** (0.035 g, 0.53 mmol) and 1*H*-tetrazole (0.025 g, 0.35 mmol) in CH₂Cl₂ (7 cm³). After stirring at rt for 2 h, the reaction mixture was diluted with dichloromethane (50 cm³) and washed with water (30 cm³). The aqueous phase was extracted with dichloromethane $(2 \times 25 \text{ cm}^3)$ and the combined dichloromethane extracts were washed with saturated Na-HCO₃ solution (30 cm³), brine (30 cm³) and dried over Na₂SO₄. The residue obtained after evaporation was purified by flash chromatography (hexane-ethyl acetate-triethylamine 80:15:5) to afford the phosphoramidite 12 (0.042 g, 88%) as a colourless oil: $[a]_D^{20} = +7.0$ (c 1.9 in CHCl₃); δ_P (162 MHz; CDCl₃) 149.4, 149.5; $\delta_{\rm H}$ (250 MHz; CDCl₃) 7.34–7.22 (10 H, m, 5 × C₆ H_5), 5.23–5.15 (1 H, m, CH₂CHCH₂), 5.10 (2 H, s, OCH₂), 4.89–4.61 (3 H, m, OCH₂, NH), 4.28–4.39 (1 H, m, CH₂CHCH₂), 4.21– 4.13 (1 H, m, CH₂CHCH₂), 3.84–3.56 (4 H, m, CH₂CHCH₂, $CH(CH_3)_2$), 3.18 (2 H, q, J 6.7, CH_2NH), 2.29 (4 H, t, J 7.3, 2 × $COCH_2$), 1.63–1.46 (6 H, m, 2 × OCOCH₂CH₂, CH₂CH₂NH), 1.26 (40 H, br s, $COC_{15}H_{31}$, $C_{11}H_{22}NH$), 1.19 (6 H, t, J 6.8, CH(CH₃)₂), 1.18 (6 H, t, J 6.8, CH(CH₃)₂), 0.88 (3 H, t, J 6.6, CH_3); m/z (FAB) [Found (M + Na)⁺ 921.6022. $C_{52}H_{87}N_2O_8PNa$ requires M, 921.6098].

(-)-1D-2,3,6-Tri-*O*-benzyl-*myo*-inositol 1-{1'-*O*-[12-*N*-(benzyl-oxycarbonyl)aminododecanoyl]-2'-*O*-hexadecanoyl-*sn*-3'-deoxyglycer-3'-yl benzyl phosphate} 4,5-bis(dibenzyl phosphate) 25

A solution of the alcohol (-)-24 (0.070 g, 0.0721 mmol) in dichloromethane (2 cm³) was added *via* cannula to a mixture of the phosphoramidite 12 (0.016 g, 0.18 mmol) and 1*H*-tetrazole (0.015 g, 0.22 mmol) in dichloromethane (1.5 cm³). After stirring at rt for 2 h, the reaction mixture was cooled to -78 °C and MCPBA (0.057 g, 0.33 mmol) was added in a single portion. After 30 min the temperature was increased to rt and stirring was continued for 45 min. The reaction mixture was diluted with dichloromethane (10 cm³) and washed with 10% NaHSO₃ solution (15 cm³). The aqueous phase was extracted with dichloromethane (2 × 15 cm³) and the combined dichloromethane extracts were washed with water (10 cm³), brine (10 cm³) and dried over Na₂SO₄. The residue obtained after evaporation was purified by flash chromatography (25–75% ethyl acetate in hexane) to afford the fully protected phospho-

lipid (–)-**25** (0.11 g, 82%) as a colourless oil (Found: C, 68.0; H, 7.2; N, 1.0; P, 5.2. $C_{101}H_{128}NO_{21}P_3$ requires C, 68.0; H, 7.2; N, 0.8; P, 5.2%); $[a]_D^{20} = -3.5$ (c 2.0 in CHCl₃); R_f 0.23 (60% ethyl acetate in hexane); v_{max} (CCl₄)/cm⁻¹ 2932, 2856, 1741, 1496, 1453, 1278, 1131 and 1022; δ_P (162 MHz; CDCl₃) -0.10, -1.20, -1.35, -1.39; δ_H (500 MHz; CDCl₃) 7.36–7.07 (43 H, m, 9 × C_6H_5), 6.95 (2 H, d, J 7.6, C_6H_5), 5.09–4.52 (22 H, m, 9 × OC H_2 , CH₂CHCH₂, NH, 2 × inositol H), 4.35–4.22 (2 H, m, 2 × inositol H), 4.11–3.75 (5 H, m, CH₂CHCH₂, inositol H), 3.56–3.48 (1 H, m, inositol H), 3.18 (2 H, q, J 6.4, CH₂NH), 2.24–2.15 (4 H, m, 2 × COCH₂), 1.55–1.48 (6 H, m, 2 × OCOCH₂CH₂, CH₂CH₂NH), 1.24 (38 H s, COC₁₅H₃₁, $C_{11}H_{22}$ NH), 0.88 (3 H, t, J 6.9, CH₃); m/z (FAB) 1806.4 (100%), 1784.3 (39%), 644.5 (47%), 536.5 (26%).

(+)-1D-*myo*-Inositol 1-(1'-*O*-12-aminododecanoyl-2'-*O*-hexadecanoyl-*sn*-3'-deoxyglycer-3'-yl sodium phosphate) 4,5-bis-(disodium phosphate) 4

To a solution of the protected lipid (-)-24 (0.095 g; 0.053 mmol) in tert-butyl alcohol (18 cm³) and water (3 cm³) was added NaHCO₃ (0.022 g; 0.27 mmol) followed by Pd black (0.10 g, catalytic). The reaction vessel was then pressurised with hydrogen (27 bar) and stirred for 21 h at rt. The mixture was centrifuged and the supernatant was removed. The residue was washed with ethyl acetate and centrifuged again. The solid residue was stirred with water (10 cm³) and centrifuged and the aqueous supernatant decanted. This procedure was repeated thrice (3 × 8 cm³ water). The combined aqueous extracts were passed through a plug of cotton wool. The filtrate was centrifuged and the supernatant freeze-dried to afford (+)-4 (0.032 g; 59%) as a fluffy white solid: $[a]_D^{20} = +3.8 (c \ 0.2 \text{ in H}_2\text{O});$ v_{max} (neat)/cm⁻¹ 3158, 2918, 2850, 1741, 1639, 1564, 1467, 1238, 1091 and 1047; δ_P (162 MHz; D₂O) 5.48, 5.31, 0.08; $\delta_{\rm H}$ (250 MHz; D₂O) 5.23 (1 H, br s, CH₂CHCH₂), 4.37 (1 H, br s, inositol H), 4.13 (3 H, br s, CH₂CHCH₂), 4.00–3.96 (3 H, br m, CH₂NH, CH₂CHCH₂), 3.87 (1 H, t, J 9.4, inositol H), 3.81 (1 H, br s, inositol H), 3.63 (1 H, d, J 9.2, inositol H), 2.90 (2 H, br s, inositol H), 2.34–2.25 (4 H, m, $2 \times COCH_2$), 1.62– 1.53 (6 H, m, 2 × OCOCH₂C H_2 , C H_2 CH₂NH), 1.24–1.20 (38 H, m, $COC_{15}H_{31}$, $C_{11}H_{22}NH$), 0.81 (3 H, br s, CH_3); m/z(-ES) [Found $(M - 2H)^-$ 927.3918. $C_{37}H_{67}NO_{19}P_3$ requires M, 927.3912].

1-*O*-[12-*N*-(Affi-Gel 10)Aminododecanoyl]-2-*O*-hexadecanoylsn-glycerol 3-phosphate 1a

Affi-Gel 10 (2 cm3 slurry, 30.00 µmol) was filtered and washed with chloroform-methanol-water (0.8 : 1 : 0.2, 15 cm³). It was transferred to a stirred solution of the acid 3a (4.0 mg, 6.14 µmol) and NaHCO₃ (0.025 g, 0.30 mmol) in chloroformmethanol-water (0.8:1:0.2, 2 cm³). The reaction mixture was stirred at rt for 18 h. The reaction mixture was filtered and washed with water (5 cm³), chloroform-methanol-water $(0.8:1:0.2,10 \text{ cm}^3)$ and water (5 cm^3) again. The gel was stored in water at 0 °C. The filtrates were combined and 4.83 µmol of $(1R^*,3S^*,5R^*,6R^*,7S^*,8R^*,9R^*)$ -6-[(4'-methoxy)phenylmethyl oxy]-2,4,10-trioxatricyclo[3.3.1.1]decane-8,9-dio1¹⁴ was added. The solvent was removed in vacuo and the white residue was taken up in CDCl₃-CD₃OD (1:1 v/v) for proton NMR. The orthoformate: amine ratio was estimated to be 1:0.22 which implied that 5.33 umol of the amine were loaded onto the beads.

$1\hbox{-} \hbox{$O$-[12-$N$-(Affi-Gel 10)Aminododecanoyl]-$2-$O$-dodecanoyl-$sn$-glycerol 3-phosphate 1b}$

Phosphatidic acid 3b (3.57 mg, 6.00 µmol) was coupled onto Affi-Gel 10 (2 cm³ slurry, 30.00 µmol), according to the procedure described above for immobilised PA 1a, to give immobilised PA 1b with 17% loading onto the beads.

1D-myo-Inositol 1-{1'-O-[12-N-(Affi-Gel 10)aminododecanoyl]-2'-O-hexadecanoyl-sn-3'-deoxyglycer-3'-yl sodium phosphate} 4,5-bis(disodium phosphate) 2

Affi-Gel 10 (4 cm³ slurry, 60 μ mol) was filtered and washed with ice-cold water (10 cm³). The wet gel slurry was transferred to a stirred solution containing the amine (+)-4 (10.5 mg, 10.1 μ mol) and NaHCO₃ (8.5 mg, 0.10 mmol) in water (15 cm³). The reaction mixture was stirred for 18 h at 0 °C. The reaction mixture was filtered and washed with ice-cold water (15 cm³). The gel was stored as a slurry in water (3 cm³) at 4–6 °C. All the washings were combined and *myo*-inositol orthoformate 13 (1.9 mg, 9.9 μ mol) was added. The solvent was removed by lyophilisation to give a solid mixture which was taken up in D₂O and analysed by 500 MHz NMR analysis. This revealed that 3.1 μ mol of the amine (+)-4 went onto the gel, affording a loading of 7.1%.

Acknowledgements

We thank the BBSRC, Cambridge Commonwealth Trust (Z.-Y. L.), Universities UK (ORS award for Z.-Y. L.), New Hall, Cambridge (Z.-Y. L.) and Tan Kar Kee Foundation, Singapore (Z.-Y. L.) for generous financial support. We thank the EPRSC Mass Spectrometry Service, Swansea for mass spectrometric analyses and Drs L. Stephens and P. Hawkins for their interest in this work.

References

- 1 A. Toker and L. C. Cantley, Nature, 1997, 387, 673.
- 2 L. E. Rameh and L. C. Cantley, J. Biol. Chem., 1999, 274, 8347.
- 3 L. V. Dekker and A. W. Segal, Science, 2000, 287, 982.
- 4 S. Corvera and M. P. Czech, Trends Cell Biol., 1998, 8, 442.
- 5 A. Toker, Curr. Opin. Cell. Biol., 1998, 10, 254.
- 6 M. P. Czech, Cell, 2000, 100, 603.
- 7 M. A. Frohman, T. C. Sung and A. J. Morris, *Biochim. Biophys. Acta*, 1999, **1439**, 175.

- 8 J. H. Exton, Biochim. Biophys. Acta, 1999, 1439, 121.
- 9 M. Liscovitch, M. Czarny, G. Fiucci and X. Tang, *Biochem. J.*, 2000, 345, 401.
- 10 For other works related to immobilised inositol phosphates, see G. D. Prestwich, J. F. Marecek, R. J. Mourey, A. B. Theibert, C. D. Ferris, S. K. Danoff and S. H. Snyder, J. Am. Chem. Soc., 1991, 113, 1822; M. Abdullah, P. J. Hughes, A. Craxton, R. Gigg, T. Desai, J. F. Marecek, G. D. Prestwich and S. B. Shears, J. Biol. Chem., 1992, 267, 22340; T. Shirai, K.-I. Tanaka, Y. Terada, T. Sawada, R. Shirai, Y. Hashimoto, S. Nagata, A. Iwamatsu, K. Okawa, S. Li, S. Hattori, H. Mano and Y. Fukui, Biochim. Biophys. Acta, 1998, 1402, 292; B. Sims, K. M. Mahnke-Zizelman, A. A. Profit, G. D. Prestwich, R. L. Sabina and A. B. Theibert, J. Biol. Chem., 1999, 274, 25701 and references cited therein.
- 11 J. Chen, A. A. Profit and G. D. Prestwich, J. Org. Chem., 1996, 61, 6305.
- 12 G. F. Painter, J. W. Thuring, Z.-Y. Lim, A. B. Holmes, P. T. Hawkins and L. R. Stephens, *Chem. Commun.*, 2001, 645.
- 13 For other syntheses of sn-1 ω-aminoacyl PIP_n analogues, see G. D. Prestwich, Acc. Chem. Res., 1996, 29, 503 and references cited therein. J. R. Flack, U. M. Krishna, K. R. Katipally, J. H. Capdevila and E. T. Ulug, Tetrahedron Lett., 2001, 41, 4271; J. R. Flack, U. M. Krishna and J. H. Capdevila, Bioorg. Med. Chem. Lett., 2000, 10 1711
- 14 For some recent syntheses of PtdIns(4,5)P₂ analogues see Q.-M. Gu and G. D. Prestwich, *J. Org. Chem.*, 1996, 61, 8642; J. R. Flack, U. M. Krishna and J. H. Capdevila, *Tetrahedron Lett.*, 1999, 40, 8771.
- 15 G. F. Painter, S. J. A. Grove, I. H. Gilbert, A. B. Holmes, P. R. Raithby, M. L. Hill, P. T. Hawkins and L. R. Stephens, J. Chem. Soc, Perkin Trans. 1, 1999, 923.
- 16 S. J. A. Grove, I. H. Gilbert, A. B. Holmes, G. F. Painter and M. L. Hill, Chem. Commun., 1997, 1633.
- 17 J. Desai, J. Gigg, R. Gigg and S. Payne, *Carbohydr. Res.*, 1992, **225**, 209
- 18 D.-S. Wang and C.-S. Chen, J. Org. Chem., 1996, 61, 5905.
- 19 J. Desai, J. Gigg, R. Gigg and E. Martin-Zamora, *Carbohydr. Res.*, 1994, 262, 59.
- 20 M. Manifava, J. W. Thuring, Z.-Y. Lim, A. B. Holmes and N. Ktistakis, *J. Biol. Chem.*, 2001, **276**, 8987.
- 21 K. Fukase, T. Matsumoto, N. Ito, T. Yoshimura, S. Kotani and S. Kusumoto, *Bull. Chem. Soc. Jpn.*, 1992, **65**, 2643.
- 22 E. F. D. Medeiros, J. M. Herbert and R. J. K. Taylor, J. Chem. Soc., Perkin Trans. 1, 1991, 2725.